Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Pharm Sci ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663498

RESUMEN

The last decade has seen Advanced Medicines Manufacturing (AMM) progress from isolated product developments to the creation of industry-academic centres of excellence, regulatory innovation progressing leading to new standards, and product commercialisation across multiple product formats. This paper examines these developments focusing on successful applications and strategies presented at the 2023 Symposium of the International Consortium for Advanced Medicines Manufacturing (ICAMM). Despite these exemplar applications, there remain significant challenges to the sector-wide adoption of AMM technologies. Drawing on Symposium delegate expert responses to open-ended questions, our coding-based thematic analysis suggest three primary enablers drive successful adoption of AMM technologies at scale, namely: the ability to leverage pre-competitive collaborations to challenge-based problem solving; information and knowledge sharing through centres of excellence; and the development of AMM specific regulatory standards. Further analysis of expert responses identified the emergence of a 'Platform creation' approach to AMM innovation; characterised by: i) New collaboration modes; ii) Exploration of common product-process platforms for new dosage forms and therapy areas; iii) Development of modular equipment assets that enable scale-out, and offer more decentralized or distributed manufacturing models; iv) Standards based on product-process platform archetypes; v) Implementation strategies where platform-thinking and AMM technologies can significantly reduce timelines between discovery, approval and GMP readiness. We provide a definition of the Platform creation concept for AMM and discuss the requirements for its systematic development.

2.
Int J Pharm X ; 7: 100239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38545329

RESUMEN

A network of regulatory innovations brings a holistic approach to improving the submission, assessment, and lifecycle management of pharmaceutical quality information in the U.S. This dedicated effort in the FDA's Center for Drug Evaluation and Research (CDER) aims to enhance the quality assessment of submissions for new drugs, generic drugs, and biological products including biosimilars. These regulatory innovations include developing or contributing: (i) the Knowledge-Aided Assessment and Structured Application (KASA), (ii) a new common technical document for quality (ICH M4Q(R2)), (iii) structured data on Pharmaceutical Quality/Chemistry, Manufacturing and Controls (PQ/CMC), (iv) Integrated Quality Assessment (IQA), (v) the Quality Surveillance Dashboard (QSD), and (vi) the Established Conditions tool from the ICH Q12 guideline. The innovations collectively drive CDER toward a more coordinated, effective, and efficient quality assessment. Improvements are made possible by structured regulatory submissions, a systems approach to quality risk management, and data-driven decisions based on science, risk, and effective knowledge management. The intended result is better availability of quality medicines for U.S. patients.

3.
Int J Mol Sci ; 24(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37762467

RESUMEN

Nutritional imbalances have been associated with a higher risk for cognitive impairment. This study determined the red blood cell (RBC) fatty acid profile of newly diagnosed mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients compared to age and gender-matched controls. There was a significant increase in palmitic acid (p < 0.00001) for both MCI and AD groups. Saturated fatty acids were significantly elevated in the MCI group, including stearic acid (p = 0.0001), arachidic acid (p = 0.003), behenic acid (p = 0.0002), tricosanoic acid (p = 0.007) and lignoceric acid (p = 0.001). n-6 polyunsaturated fatty acids (PUFAs) were significantly reduced in MCI, including linoleic acid (p = 0.001), γ-linolenic acid (p = 0.03), eicosatrienoic acid (p = 0.009) and arachidonic acid (p < 0.00004). The n-3 PUFAs, α-linolenic acid and docosahexaenoic acid, were both significantly reduced in MCI and AD (p = 0.0005 and p = 0.00003). A positive correlation was evident between the Mini-Mental State Examination score and nervonic acid in MCI (r = 0.54, p = 0.01) and a negative correlation with γ-linolenic acid in AD (r = -0.43, p = 0.05). Differences in fatty acid profiles may prove useful as potential biomarkers reflecting increased risk for dementia.

4.
Int J Pharm ; 622: 121778, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35500688

RESUMEN

Continuous manufacturing (CM) sends materials directly and continuously to the next step of a process, eliminating hold times and reducing processing times. The potential benefits of CM include improved product quality, reduced waste, lower costs, and increased manufacturing flexibility and agility. Some pharmaceutical manufacturers have been hesitant to adopt CM owing to perceived regulatory risks such as increased time to regulatory approval and market entry, more difficulty submitting postapproval changes, and higher inspectional scrutiny. An FDA self-audit of regulatory submissions in the U.S. examined the outcomes, at approval and during the product lifecycle, of continuous manufacturing applications as compared to traditional batch applications. There were no substantial regulatory barriers identified for CM applications related to manufacturing process changes or pre-approval inspections. CM applicants had relatively shorter times to approval and market as compared to similar batch applications, based on the mean or median times to approval (8 or 3 months faster) and marketing (12 or 4 months faster) from submission, translating to an estimated $171-537 M in early revenue benefit.


Asunto(s)
Tecnología Farmacéutica , Preparaciones Farmacéuticas
6.
Am Heart J ; 240: 101-113, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34175315

RESUMEN

BACKGROUND: The presence and extent of left ventricular hypertrophy (LVH) is a major determinant of symptoms in patients with hypertrophic cardiomyopathy (HCM). There is increasing evidence to suggest that myocardial energetic impairment represents a central mechanism leading to LVH in HCM. There is currently a significant unmet need for disease-modifying therapy that regresses LVH in HCM patients. Perhexiline, a potent carnitine palmitoyl transferase-1 (CPT-1) inhibitor, improves myocardial energetics in HCM, and has the potential to reduce LVH in HCM. OBJECTIVE: The primary objective is to evaluate the effects of perhexiline treatment on the extent of LVH, in symptomatic HCM patients with at least moderate LVH. METHODS/DESIGN: RESOLVE-HCM is a prospective, multicenter double-blind placebo-controlled randomized trial enrolling symptomatic HCM patients with at least moderate LVH. Sixty patients will be randomized to receive either perhexiline or matching placebo. The primary endpoint is change in LVH, assessed utilizing cardiovascular magnetic resonance (CMR) imaging, after 12-months treatment with perhexiline. SUMMARY: RESOLVE-HCM will provide novel information on the utility of perhexiline in regression of LVH in symptomatic HCM patients. A positive result would lead to the design of a Phase 3 clinical trial addressing long-term effects of perhexiline on risk of heart failure and mortality in HCM patients.


Asunto(s)
Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/fisiopatología , Fármacos Cardiovasculares/uso terapéutico , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/prevención & control , Perhexilina/uso terapéutico , Adulto , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Método Doble Ciego , Ecocardiografía , Femenino , Humanos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos
7.
Int J Pharm ; 602: 120554, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33794326

RESUMEN

Over the last two centuries, medicines have evolved from crude herbal and botanical preparations into more complex manufacturing of sophisticated drug products and dosage forms. Along with the evolution of medicines, the manufacturing practices for their production have advanced from small-scale manual processing with simple tools to large-scale production as part of a trillion-dollar pharmaceutical industry. Today's pharmaceutical manufacturing technologies continue to evolve as the internet of things, artificial intelligence, robotics, and advanced computing begin to challenge the traditional approaches, practices, and business models for the manufacture of pharmaceuticals. The application of these technologies has the potential to dramatically increase the agility, efficiency, flexibility, and quality of the industrial production of medicines. How these technologies are deployed on the journey from data collection to the hallmark digital maturity of Industry 4.0 will define the next generation of pharmaceutical manufacturing. Acheiving the benefits of this future requires a vision for it and an understanding of the extant regulatory, technical, and logistical barriers to realizing it.


Asunto(s)
Inteligencia Artificial , Preparaciones Farmacéuticas , Industria Farmacéutica , Predicción , Tecnología Farmacéutica
8.
AAPS J ; 23(3): 48, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33768368

RESUMEN

In the context of streamlining generic approval, this study assessed whether pharmacokinetics (PK) could elucidate the pulmonary fate of orally inhaled drug products (OIDPs). Three fluticasone propionate (FP) dry powder inhaler (DPI) formulations (A-4.5, B-3.8, and C-3.7), differing only in type and composition of lactose fines, exhibited median mass aerodynamic diameter (MMAD) of 4.5 µm (A-4.5), 3.8 µm (B-3.8), and 3.7 µm (C-3.7) and varied in dissolution rates (A-4.5 slower than B-3.8 and C-3.7). In vitro total lung dose (TLDin vitro) was determined as the average dose passing through three anatomical mouth-throat (MT) models and yielded dose normalization factors (DNF) for each DPI formulation X (DNFx = TLDin vitro,x/TLDin vitro,A-4.5). The DNF was 1.00 for A-4.5, 1.32 for B-3.8, and 1.21 for C-3.7. Systemic PK after inhalation of 500 µg FP was assessed in a randomized, double-blind, four-way crossover study in 24 healthy volunteers. Peak concentrations (Cmax) of A-4.5 relative to those of B-3.8 or C-3.7 lacked bioequivalence without or with dose normalization. The area under the curve (AUC0-Inf) was bio-IN-equivalent before dose normalization and bioequivalent after dose normalization. Thus, PK could detect differences in pulmonary available dose (AUC0-Inf) and residence time (dose-normalized Cmax). The differences in dose-normalized Cmax could not be explained by differences in in vitro dissolution. This might suggest that Cmax differences may indicate differences in regional lung deposition. Overall this study supports the use of PK studies to provide relevant information on the pulmonary performance characteristics (i.e., available dose, residence time, and regional lung deposition).


Asunto(s)
Broncodilatadores/farmacocinética , Medicamentos Genéricos/farmacocinética , Fluticasona/farmacocinética , Administración por Inhalación , Adolescente , Adulto , Aerosoles , Área Bajo la Curva , Broncodilatadores/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Liberación de Fármacos , Medicamentos Genéricos/administración & dosificación , Inhaladores de Polvo Seco , Femenino , Fluticasona/administración & dosificación , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Polvos , Equivalencia Terapéutica , Adulto Joven
9.
Trends Biotechnol ; 37(3): 253-267, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30241924

RESUMEN

There is a trend across the pharmaceutical sector toward process intensification and continuous manufacturing to produce small-molecule drugs or biotechnology products. For biotechnology products, advancing the manufacturing technology behind upstream and downstream processes has the potential to reduce product shortages and variability, allow for production flexibility, simplify scale-up procedures, improve product quality, reduce facility footprints, increase productivity, and reduce production costs. On the upstream side of biotechnology manufacturing, continuous perfusion cell cultures are fairly well established. However, truly integrated continuous biomanufacturing requires the uninterrupted connection of continuous unit operations (upstream and downstream) with no isolated intermediate or hold steps occurring between them. This work examines the current scientific and regulatory landscape surrounding the implementation of integrated continuous biomanufacturing.


Asunto(s)
Productos Biológicos/aislamiento & purificación , Productos Biológicos/metabolismo , Biotecnología/métodos , Aprobación de Drogas/métodos , Tecnología Farmacéutica/métodos , Biotecnología/tendencias , Tecnología Farmacéutica/tendencias
10.
J Pharm Sci ; 106(11): 3199-3206, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655487

RESUMEN

Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology.


Asunto(s)
Industria Farmacéutica/métodos , Control de Medicamentos y Narcóticos/métodos , Tecnología Farmacéutica/métodos , Humanos , Massachusetts , Control de Calidad , Medición de Riesgo
11.
Nat Nanotechnol ; 12(6): 523-529, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28436961

RESUMEN

The Center for Drug Evaluation and Research (CDER) within the US Food and Drug Administration (FDA) is tracking the use of nanotechnology in drug products by building and interrogating a technical profile of products containing nanomaterials submitted to CDER. In this Analysis, data from more than 350 products show an increase in the submissions of drug products containing nanomaterials over the last two decades. Of these, 65% are investigational new drugs, 17% are new drug applications and 18% are abbreviated new drug applications, with the largest class of products being liposomal formulations intended for cancer treatments. Approximately 80% of products have average particle sizes of 300 nm or lower. This analysis identifies several trends in the development of drug products containing nanomaterials, including the relative rate of approvals of these products, and provides a comprehensive overview on the landscape of nanotechnology application in medicine.


Asunto(s)
Aprobación de Drogas , Diseño de Fármacos , Nanoestructuras/uso terapéutico , Preparaciones Farmacéuticas , Humanos , Liposomas , Tamaño de la Partícula , Estados Unidos , United States Food and Drug Administration
12.
AAPS J ; 19(3): 642-651, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28281194

RESUMEN

Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.


Asunto(s)
Industria Farmacéutica/estadística & datos numéricos , Nanopartículas , Nanotecnología/estadística & datos numéricos , Preparaciones Farmacéuticas/química , Industria Farmacéutica/métodos , Industria Farmacéutica/normas , Preparaciones Farmacéuticas/normas
13.
AAPS J ; 19(3): 632-641, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28160164

RESUMEN

Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.


Asunto(s)
Portadores de Fármacos , Industria Farmacéutica/métodos , Liposomas , Control de Calidad , Estados Unidos
14.
Int J Pharm ; 518(1-2): 320-334, 2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28027918

RESUMEN

Peptides are a fast growing segment in the pharmaceutical industry. Consequently, the industry and regulatory agencies are increasing their focus on the regulatory path and quality considerations for peptide development and manufacturing. Although most peptides are synthetic, manufactured by solid phase synthesis, nevertheless they are complex molecules with challenging quality and regulatory aspects. This paper provides a structured overview of relevant quality issues for chemically synthesized peptides used as active pharmaceutical ingredients (API) in drug products. It addresses the unique characteristics of peptides pertaining to structural and physicochemical characterization, manufacturing and in process controls, impurities and aggregates arising from manufacturing and storage, along with their potential impact on safety (including immunogenicity) and efficacy of the peptide drug products.


Asunto(s)
Péptidos , Medicamentos Genéricos , Legislación de Medicamentos , Control de Calidad
15.
Int J Pharm ; 515(1-2): 390-402, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-27773853

RESUMEN

Failures surrounding pharmaceutical quality, particularly with respect to product manufacturing issues and facility remediation, account for the majority of drug shortages and product recalls in the United States. Major scientific advancements pressure established regulatory paradigms, especially in the areas of biosimilars, precision medicine, combination products, emerging manufacturing technologies, and the use of real-world data. Pharmaceutical manufacturing is increasingly globalized, prompting the need for more efficient surveillance systems for monitoring product quality. Furthermore, increasing scrutiny and accelerated approval pathways provide a driving force to be even more efficient with limited regulatory resources. To address these regulatory challenges, the Office of Pharmaceutical Quality (OPQ) in the Center for Drug Evaluation and Research (CDER) at the U.S. Food and Drug Administration (FDA) harbors a rigorous science and research program in core areas that support drug quality review, inspection, surveillance, standards, and policy development. Science and research is the foundation of risk-based quality assessment of new drugs, generic drugs, over-the-counter drugs, and biotechnology products including biosimilars. This is an overview of the science and research activities in OPQ that support the mission of ensuring that safe, effective, and high-quality drugs are available to the American public.


Asunto(s)
Preparaciones Farmacéuticas/normas , Investigación/normas , Humanos , Estados Unidos , United States Food and Drug Administration
16.
Int J Pharm ; 509(1-2): 492-498, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27260134

RESUMEN

Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies.


Asunto(s)
Industria Farmacéutica/métodos , Industria Farmacéutica/normas , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/normas , Tecnología Farmacéutica/métodos , Tecnología Farmacéutica/normas , Humanos , Control de Calidad , Estados Unidos , United States Food and Drug Administration
18.
AAPS J ; 17(5): 1305-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26033698

RESUMEN

This article summarizes discussions at the March 2014 conference organized by the University of Florida (UF) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS), entitled "Orlando Inhalation Conference: Approaches in International Regulation." The special focus of the conference was on global scientific and regulatory issues associated with the testing and demonstration of equivalence for the registration of orally inhaled drug products (OIDPs) in the United States, Europe, Brazil, China, and India. The scope included all types of OIDPs throughout their lifecycle, e.g., innovator/brand-name products, generics, modifications due to lifecycle management, device changes, etc. Details were presented for the U.S. "weight of evidence approach" for registration of generic products (which includes demonstration of in vitro and in vivo equivalence, as well as quantitative and qualitative sameness, and device similarity). The European "stepwise" approach was elucidated, and the thinking of regulatory agencies in the major emerging markets was clarified. The conference also highlighted a number of areas that would benefit from further research and discussion, especially around patient/device interface and human factor studies, statistical methods and criteria for demonstrating equivalence, the relative roles of in vivo and in vitro tests, and appropriate designs and metrics for in vivo studies of inhaled drugs.


Asunto(s)
Diseño de Fármacos , Legislación de Medicamentos , Preparaciones Farmacéuticas/administración & dosificación , Administración por Inhalación , Administración Intranasal , Medicamentos Genéricos/administración & dosificación , Humanos , Equivalencia Terapéutica
19.
AAPS J ; 17(5): 1285-304, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26002510

RESUMEN

This article describes regulatory approaches for approval of "generic" orally inhaled drug products (OIDPs) in the United States, European Union, Brazil, China and India. While registration of a generic OIDP in any given market may require some documentation of the formulation and device similarity to the "original" product as well as comparative testing of in vitro characteristics and in vivo performance, the specific documentation approaches, tests and acceptance criteria vary by the country. This divergence is due to several factors, including unique cultural, historical, legal and economic circumstances of each region; the diverse healthcare and regulatory systems; the different definitions of key terms such as "generic" and "reference" drug; the acknowledged absence of in vitro in vivo correlations for OIDPs; and the scientific and statistical issues related to OIDP testing (such as how best to account for the batch-to-batch variability of the Reference product, whether to use average bioequivalence or population bioequivalence in the statistical analysis of results, whether to use healthy volunteers or patients for pharmacokinetic studies, and which pharmacodynamic or clinical end-points should be used). As a result of this discrepancy, there are ample opportunities for the regulatory and scientific communities around the world to collaborate in developing more consistent, better aligned, science-based approaches. Moving in that direction will require both further research and further open discussion of the pros and cons of various approaches.


Asunto(s)
Aprobación de Drogas/legislación & jurisprudencia , Medicamentos Genéricos/administración & dosificación , Administración por Inhalación , Química Farmacéutica , Medicamentos Genéricos/farmacocinética , Humanos , Equivalencia Terapéutica
20.
AAPS J ; 17(4): 1011-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25840884

RESUMEN

On September 16 and 17, 2014, the Food and Drug Administration (FDA) and Product Quality Research Institute (PQRI) inaugurated their Conference on Evolving Product Quality. The Conference is conceived as an annual forum in which scientists from regulatory agencies, industry, and academia may exchange viewpoints and work together to advance pharmaceutical quality. This Conference Summary Report highlights key topics of this conference, including (1) risk-based approaches to pharmaceutical development, manufacturing, regulatory assessment, and post-approval changes; (2) FDA-proposed quality metrics for products, facilities, and quality management systems; (3) performance-based quality assessment and clinically relevant specifications; (4) recent developments and implementation of continuous manufacturing processes, question-based review, and European Medicines Agency (EMA)-FDA pilot for Quality-by-Design (QbD) applications; and (5) breakthrough therapies, biosimilars, and international harmonization, focusing on ICH M7 and Q3D guidelines. The second FDA/PQRI conference on advancing product quality is planned for October 5-7, 2015.


Asunto(s)
Diseño de Fármacos , Preparaciones Farmacéuticas/normas , Aprobación de Drogas , Humanos , Control de Calidad , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...